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Stabilization by noise

For a d× d matrix A0, the trivial solution Xt ≡ 0 of ODE

Ẋt = A0Xt, X0 ∈ Rd

is unstable if A0 has positive eigenvalues.

When can the above system be stabilized by noise?

dXt = A0Xt dt+

m∑
i=1

AiXt ◦ dW i
t , X0 ∈ Rd.

Here A1, . . . , Am are some matrices.

Define the Lyapunov exponent

λ(X0, ω) = lim sup
t→∞

1

t
log |Xt(X0, ω)|.

Oseledec’s multiplicative ergodic theorem: with prob. 1, ∃ d random
numbers λ1 ≤ · · · ≤ λd such that λ(X0, ω) takes one of them.

Dejun Luo (AMSS, CAS) Dissipation enhancement 4 / 24



Stabilization by noise

L. Arnold-Crauel-Wihstutz (SIAM J Contr. Optim., 1983):
for some ν > 0, consider

dXt = A0Xt dt+ ν

m∑
i=1

AiXt ◦ dW i
t , X0 ∈ Rd.

ν is the intensity of the noise.

Theorem
There are skew-symmetric matrices A1, . . . , Am such that the top Lyapunov
exponent λν satisfies

lim
ν→∞

λν =
Tr(A0)

d
.

In particular, Ẋt = A0Xt can be stabilized by noise iff Tr(A0) < 0.

d|Xt|2 = 2〈Xt, A0Xt〉dt+ 2ν
m∑
i=1

〈Xt, AiXt〉︸ ︷︷ ︸
=0

◦dW i
t = 2〈Xt, A0Xt〉dt.
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A trivial example

Consider A0 =

(
1 0
0−2

)
, Tr(A0) = −1 < 0.
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Ẋt = A0Xt

-

6

x

y

0

↓

↑

→←

i



q

�

dXt = A0Xt dt+ ν
∑m

i=1AiXt ◦ dW i
t

Intuition: the noise mixes the two coordinates to yield stability on
average.
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Transport noise for parabolic equations

M. Capiński’s conjecture (around 1987):

In infinite dimensional case, stochastic transport noise could have a
similar stabilizing effect for parabolic equations.

Heat equation with transport noise:

df = ∆f dt+ ν
∑
k

σk · ∇f ◦ dW k
t ,

where {σk}k are divergence free vector fields. Since

〈σk · ∇f, g〉L2 = −〈f, σk · ∇g〉L2 ,

transport noise behaves similarly as skew-symmetric matrices.

By Stratonovich calculus,

d‖f‖2L2 = 2〈f,∆f〉dt+ 2ν
∑
k

〈f, σk · ∇f〉 ◦ dW k
t = −2‖∇f‖2L2 dt.
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Heuristic explanation

Stirring the fluid produces small scale motions, which correspond
to high frequencies in Fourier series.

Higher frequencies correspond to smaller eigenvalues of ∆
(−λk ↘ −∞), which yield stronger dissipation.

Since transport noise mixes Fourier modes, we expect the top
Lyapunov exponent

lim
ν→∞

λν = −∞.
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Some results in deterministic setting

Constantin-Kiselev-Ryzhik-Zlatoš (Ann. Math., 2008) considered
heat equation on compact manifolds M :

∂tf
ν = ∆fν + ν b · ∇fν , fν(0, x) = f0(x),

where b is a Lipschitz divergence free vector field.

They studied the phenomenon of dissipation enhancement.

Theorem

If b · ∇ has no eigenfunctions in H1(M) (except trivial constant
functions), then ∀ t > 0 and f0 ∈ L2(M), one has

lim
ν→∞

∥∥fν(t, ·)− f̄0

∥∥
L2 = 0,

where f̄0 = 1
|M |
∫
M f0 dx.
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Transport noise in inviscid models

2D Euler equation:{
∂tu+ u · ∇u+∇p = 0

∇ · u = 0
←→

{
∂tξ + u · ∇ξ = 0

ξ = ∇⊥ · u = ∂2u1 − ∂1u2

The enstrophy meas. (or white noise meas.) is formally invariant:

µ(dξ) =
1

Z
exp

(
− 1

2
‖ξ‖2L2

)
dξ, supp(µ) = H−1−(T2).

Flandoli-Luo (AoP, 2020): white noise solutions of stoch. 2D Euler eqs

dξN + uN · ∇ξN dt =

√
2ν

logN

∑
k∈Z2

0,|k|≤N

1

|k|
σk · ∇ξN ◦ dWk

t

= ν∆ξN dt+

√
2ν

logN

∑
k∈Z2

0,|k|≤N

1

|k|
σk · ∇ξN dWk

t

converge to the unique stationary solu. of 2D NSEs with space-time
white noise:

∂tξ + u · ∇ξ = ν∆ξ +
√

2ν∇⊥ · η ←→ ∂tu+ u · ∇u+∇p = ν∆u+
√

2νη,

where η(t, x) =
∑
k σk(x)Ẇ k

t , σk(x) = k⊥

|k| ek(x).
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Stoch. linear transport eqs

Lucio Galeati (SPDE Anal Comp, 2020):

stochastic linear transport eqs with L2-initial data f0:

df = b · ∇f dt+
√

2ν
∑
k∈Z2

0

θkσk · ∇f ◦ dWk
t

= b · ∇f dt+ ν∆f dt+
√

2ν
∑
k

θkσk · ∇f dWk
t ,

where ν > 0 is noise intensity, {θk}k ∈ `2(Z2
0), θk = θl for all |k| = |l|.

∀ t ≤ T , it holds ‖ft‖L2 ≤ CT ‖f0‖L2 (independent of ν and θ ∈ `2).

Taking {θN}N≥1 ⊂ `2(Z2
0) satisfying ‖θN‖`2 = 1 and lim

N→∞
‖θN‖`∞ = 0,

Lucio Galeati proved

dfN = b · ∇fN dt+ ν∆fN dt+
√

2ν
∑
k

θNk σk · ∇f
N dWk

t

converge to the deterministic parabolic eq:

∂tf = b · ∇f + ν∆f, f |t=0 = f0.

If θNk = 1
ZN

1{N≤|k|≤2N}
|k|a (k ∈ Z2

0), then ZN ∼ 1
Na−1 and ‖θN‖`∞ ∼ 1

N .
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Why the martingale part vanishes?

Recall the martingale part

dMN
t =

∑
k∈Z2

0

θNk σk · ∇fNt dW k
t .

For any φ ∈ C1(T2), we have〈
MN
t , φ

〉
= −

∑
k

θNk

∫ t

0

〈
fNs , σk · ∇φ

〉
dW k

s .

=⇒ E
〈
MN
t , φ

〉2
=
∑
k

(
θNk
)2 E∫ t

0

〈
fNs , σk · ∇φ

〉2
ds

≤
∥∥θN∥∥2

`∞
E
∫ t

0

∑
k

〈
fNs ∇φ, σk

〉2
ds

≤
∥∥θN∥∥2

`∞
E
∫ t

0

∥∥fNs ∇φ∥∥2

L2 ds

≤
∥∥θN∥∥2

`∞
‖∇φ‖2L∞CT ‖f0‖2L2 → 0.
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Scaling limit of stoch 2D Euler eq

Flandoli-Galeati-Luo (J Evol Equ, 2021):

stochastic 2D Euler equations in vorticity form, with L2-initial data:

dξ + u · ∇ξ dt =
√

2ν
∑
k

θkσk · ∇ξ ◦ dW k
t

= ν∆ξ dt+
√

2ν
∑
k

θkσk · ∇ξ dW k
t .

∃ weak solution {ξt}t∈[0,T ] such that P-a.s. ‖ξt‖L2 ≤ ‖ξ0‖L2 .

Taking {θN}N ⊂ `2(Z2
0) s.t. ‖θN‖`2 = 1 and lim

N→∞
‖θN‖`∞ = 0,

we proved ξN
w
⇀ ξ, the unique solution of the deterministic 2D NSE in

vorticity form:{
∂tξ + u · ∇ξ = ν∆ξ,

u = K ∗ ξ
←→

{
∂tu+ u · ∇u+∇p = ν∆u,

∇ · u = 0.

The proof is based on compactness arguments, hence there is no
convergence rate.

Dejun Luo (AMSS, CAS) Dissipation enhancement 14 / 24



Related works: suppression of blow-up

3D NSEs on T3.{
∂tu+ u · ∇u+∇p = ∆u

∇ · u = 0
←→

{
∂tξ + u · ∇ξ − ξ · ∇u = ∆ξ

ξ = ∇× u

u, ξ : R+ × T3 → R3.

Flandoli-Luo (PTRF, 2021): Stoch 3D NSEs.

dξ + (u · ∇ξ − ξ · ∇u) dt = ∆ξ dt+
√

2ν
∑
k∈Z3

0

2∑
i=1

θkΠ(σk,i · ∇ξ) ◦ dW k,i
t .

∀R > 0, ∃ big ν and θ ∈ `2(Z3
0), such that ∀ ‖ξ0‖L2 ≤ R, global solution

exists with large probability.

Flandoli-Galeati-Luo (Comm. PDE, 2021): general nonlinear eqs on Td.

df = −(−∆)αf dt+ Φ(f) dt+
√

2ν
∑
k∈Zd0

d−1∑
i=1

θkσk,i · ∇f ◦ dW k,i
t ,

where α ≥ 1 and Φ : Hα → H−α is some nonlinear mapping.
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Stochastic heat equation

Heat equation with transport noise on T2:

∂tf = κ∆f + Ẇt · ∇f, Wt(x) =
√

2ν
∑
k∈Z2

0

θkσk(x)W k
t ;

κ > 0: molecular diffusivity; ν > 0: noise intensity.

θ = (θk)k∈Z2
0
∈ `2(Z2

0), ‖θ‖`2 = 1, θ is radially symmetric.

σk(x) = k⊥

|k| ek(x), k ∈ Z2
0.

Stratonovich to Itô:

df = κ∆f dt+
√

2ν
∑
k

θkσk · ∇f ◦ dW k
t

= κ∆f dt+ ν
∑
k

θ2
kσk · ∇(σk · ∇f) dt+

√
2ν
∑
k

θkσk · ∇f dW k
t

= (κ+ ν)∆f dt+
√

2ν
∑
k

θkσk · ∇f dW k
t .
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Dissipation enhancement

Though there is ν∆, it does not mean dissipation has already been
enhanced.

Indeed, by Itô’s formula,

d‖f‖2L2 = 2κ〈f,∆f〉 dt+ 2
√

2ν
∑
k

θk〈f, σk · ∇f〉 ◦ dW k
t

= −2κ‖∇f‖2L2 dt ≤ −8κπ2‖f‖2L2 dt

=⇒ ‖ft‖L2 ≤ ‖f0‖L2 e−4κπ2t (independent of ν and θ)

Theorem (Flandoli-Galeati-Luo, arXiv:2104.01740)

∀λ > 0, ∃ ν > 0 and θ ∈ `2(Z2
0) with the following property:

∀ f0 ∈ L2(Td) with zero mean, ∃ a random constant C > 0 such that, for the
solution ft with initial condition f0, it holds

P-a.s. ‖ft‖L2 ≤ Ce−λt for all t ≥ 0.

Dejun Luo (AMSS, CAS) Dissipation enhancement 18 / 24



Outline

1 Backgrounds

2 Main results

3 Sketch of proofs

Dejun Luo (AMSS, CAS) Dissipation enhancement 19 / 24



Stoch heat eqn and mild formulation

df = κ∆f dt+
√

2ν
∑
k

θkσk · ∇f ◦ dW k
t

= (κ+ ν)∆f dt+
√

2ν
∑
k

θkσk · ∇f dW k
t .

Energy balance: ∀ 0 ≤ s < t,

‖ft‖2L2 + 2κ

∫ t

s

‖∇fr‖2L2 dr = ‖fs‖2L2 ,

in particular, t→ ‖ft‖2L2 is decreasing.

Mild formulation: ∀ 0 ≤ s < t,

ft = e(κ+ν)(t−s)∆fs +
√

2ν
∑
k

θk

∫ t

s

e(κ+ν)(t−r)∆(σk · ∇fr) dW k
r︸ ︷︷ ︸

Zs,t

.
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Key lemma

Lemma

∃ δ ∈ (0, 1) such that for any n ≥ 0,

E‖fn+1‖2L2 ≤ δ E‖fn‖2L2 ,

where, for some 0 < α < 1 < β,

δ ≤ Cα,β
[
(κ+ ν)−1 + ν

4β−α(2β+d)
4(α+β) κ

− β
α+β ‖θ‖

2α
α+β

`∞

]
.

In particular, δ can be as small as possible by first taking ν big, and then
letting ‖θ‖`∞ small enough.

Idea of proof: using monotonicity t→ ‖ft‖2L2 and mild formulation

ft = e(κ+ν)(t−s)∆fs + Zs,t,

‖fn+1‖2L2 ≤
∫ n+1

n

‖ft‖2L2 dt ≤ 2

∫ n+1

n

‖e(κ+ν)(t−n)∆fn‖2L2 dt+

∫ n+1

n

‖Zn,t‖2L2 dt

≤ 2

∫ n+1

n

e8π2(κ+ν)(t−n)‖fn‖2L2 dt+

∫ n+1

n

‖Zn,t‖2L2 dt.
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Proof of the main theorem

Theorem (Flandoli-Galeati-Luo, arXiv:2104.01740)

∀λ > 0, ∃ ν > 0 and θ ∈ `2(Z2
0) with the following property:

∀ f0 ∈ L2(Td) with zero mean, ∃ a random constant C > 0 such that,
for the solution ft with initial condition f0, it holds

P-a.s. ‖ft‖L2 ≤ Ce−λt for all t ≥ 0.

Proof. The above lemma implies ∃ δ ∈ (0, 1) such that for any n ≥ 1,

E
[

sup
t∈[n,n+1]

‖ft‖2L2

]
= E‖fn‖2L2 ≤ δ E‖fn−1‖2L2 ≤ · · ·

≤ δn‖f0‖2L2 = e−λ0n‖f0‖2L2 .

Choosing ν big and ‖θ‖`∞ small, we can make λ0 as big as we want.
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Proof of the main theorem

Fix any λ ∈ (0, λ0), define the event

An =

{
ω ∈ Ω : sup

t∈[n,n+1]

‖ft(ω)‖2L2 > e−λn
}
, n ≥ 1.

Then by Chebyshev’s inequality,∑
n

P(An) ≤
∑
n

eλnE
[

sup
t∈[n,n+1]

‖ft‖2L2

]
≤
∑
n

e(λ−λ0)n‖f0‖2L2 < +∞.

Borel-Cantelli lemma implies, for P-a.s. ω, ∃n(ω) ∈ N such that

sup
t∈[n,n+1]

‖ft(ω)‖2L2 ≤ e−λn, ∀n ≥ n(ω).

Thus ∃ a random constant C > 0 such that

‖ft(ω)‖2L2 ≤ Ce−λt, t ≥ 0.

Dejun Luo (AMSS, CAS) Dissipation enhancement 23 / 24



���������[[[!

Dejun Luo (AMSS, CAS) Dissipation enhancement 24 / 24


	Backgrounds
	Main results
	Sketch of proofs

